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Numerical modelling of casting processes has become an up-to-date standard in
industry, aiming at a short term design of modern casting with optimized prop-
erties. This paper outlines the present modelling approaches and gives an over-
view on thermophysical properties (parameters) necessary for such simulations.
Mould filling and heat transport simulations, stress and strain predictions,
Cellular Automaton and phase-field techniques, and recent multiphase volume
average approaches are discussed. The number of necessary material properties
is shown to be directly correlated to the amount of complexity considered in the
corresponding modelling approach.
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1. INTRODUCTION

Castings are important in nearly every area of daily life. The essential parts
in engines, turbines, and any other machines are castings. Cast parts are
used medically, in arts and many everyday objects. However, the produc-
tion of a casting is quite complicated. Many defects such as cavities, poros-
ity, macrosegregations, cracks or deformations, and distortions may cause
the casting to be rejected. Thus, the production of good castings has always
needed (and still needs) the expertise of specialists. Since the advance of com-
puter technology, people use numerical models to assist these specialists in
designing and producing cast parts with fewer defects.



This paper gives an overview on standard and modern simulation
techniques for a numerical description of solidification and casting. Mould
filling and heat transport simulations, stress and strain predictions, Cellular
Automaton and phase-field techniques, and recent multiphase volume
average approaches are discussed. Reviews on numerical modelling of
solidification and casting processes can be found in Refs. 1–3.

2. SIMULATION TECHNIQUES

2.1. Heat Flux Simulation with Mould Filling

Nowadays, the simulation of heat flow in the metal and the mould in
combination with mould filling can be regarded as a standard for model-
ling solidification and casting with commercial programs. The basic of
every software that is able to simulate casting processes is the solution of
the heat flow equation in the metal and the mould. The corresponding
equation is given by

“

“t
(rcpT)+NF · (rcpnFT)=N · (l NT)+Dh f

“fs
“t

(1)

Here, r represents the density, cp the specific heat capacity, l the heat
conductivity, Dh f the heat of fusion, T the temperature, nF the velocity of the
melt (zero in case of only heat transport), and t the time. The change of
solid fraction with time is commonly replaced by the change of fs with
temperature via “fs/“t=(“fs/“T)(“T/“t). Thus, fs(T) is an input quan-
tity which should be known from experimental results.

Using this simple differential equation for the solidification process
implies that the liquid and the solid are considered as being only one phase
with temperature dependent properties. Above the liquidus temperature, TL,
the corresponding property is given by the property of the liquid, below the
solidus, TS, by the one of the solid, and between TL and TS by the property
of the solid/liquid mixture. For more complex alloys which solidify with
more than one solid phase or which reveal one or more solid state phase
transitions, the corresponding property is thought to represent the value of
the corresponding phase mixture.

The temperature dependence of the density, r(T), the specific heat
capacity, cp(T), and the heat conductivity, l(T), must be known not only
for metal and mould but also for all additional components involved in the
casting process, such as sand cores, chill plates, etc.
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It is well known that surface roughness, surface buckling and/or
oxidation will lead to heat resistance at interfaces between different mate-
rials. This heat resistance is taken into account by the following empirical
relation,

q=H·(Tg
metal−T

g
mould). (2)

Here, q represents the heat flow across the interface, Tg
metal and Tg

mould are
the ‘‘macroscopic’’ temperatures at the interface (here of metal and mould),
and H is the so-called heat transfer coefficient. Although H is theoretically
a function of the interface condition (roughness, gap width, contact pres-
sure, etc.), it is quite often assumed to be a function of Tg

metal only. Now-
adays, more sophisticated models which consider stresses and distortion
start to model the heat transfer explicitly by using a functional relation
between H and the gap width and/or the contact pressure [4].

In addition to heat transport, many software packages are able to
describe the filling of the mould with the liquid metal [5]. In order to
simulate this filling procedure, the Navier–Stokes equation together with
the mass conservation equation has to be solved:

“

“t
(rnF)+NF · (rnF é nF)=−NFp+NF ȳ̄+rgF with ȳ̄=rm{NF(nF)+[NF(nF)] t} (3)

“

“t
r+NF · (rnF)=0. (4)

Here, nF represents the velocity of the melt, p the pressure, ȳ̄ the stress
tensor, gF the gravity vector, and m(T) the kinetic viscosity. é is the dyadic
product. Above TL, m(T) represents the viscosity of the liquid alloy. Below TS,
the rigid solid reveals a viscosity more than ten orders of magnitude
larger than the melt. Between TL and TS, m(T) represents the viscosity of
the solid/liquid mixture. Depending on the nature of the solidification
process, the solid/liquid mixture still may be mobile within the mushy
regions. This is taken into account by introducing a coherency temperature
somewhere between TL and TS. Above this coherency temperature, the vis-
cosity of the mixture is just that of the liquid, and below, it is already six to
eight orders of magnitude larger. This approach is somehow arbitrary.
Nevertheless, apart from special situations in which the gating system is
accidentally frozen up during filling, the result of the filling simulation is
generally not much influenced by the choice of the coherency temperature
and the chosen viscosity enlargement at this temperature.

In order to simplify the simulation of the filling procedure, the flow of
the air in the cavity (or other gases) is often neglected. However, the use of
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Table I. Material Properties Necessary for a Simulation of Heat Flow with Mould Filling
(Properties Marked with * Are Necessary for Both Metal and Mould)

Symbol Property Unit

Dh f Latent heat of fusion J · kg−1

TL, TS Liquidus and solidus temperature K
r(T) Density* kg · m−3

cp(T) Specific heat capacity* J · kg−1 · K−1

l(T) Thermal conductivity* J · s−1 · m−1 · K−1

fs(T) Fraction solid –
m(T) Kinetic viscosity m2 · s−1

simple analytical expressions for the pressure release at venting holes allows
the evaluation of the overall pressure within the cavity. The air/melt
interface tension as well as oxidation skins at the air/melt interfaces are
generally ignored.

In Table I the material properties necessary for a simulation of casting
processes considering only heat flow with mould filling are listed.

2.2. Simulation of Stresses and Distortion

The prediction of deformations and distortion is quite important for
the production of castings with a well defined shape fitting into given limits
of tolerance. It is obvious that the thermal contraction of metal and mould,
the volume change due to solidification and the nonuniform cooling of
the metal and the nonuniform heating of the mould lead to geometrical
changes of the cast part. The simulation of stresses and distortion is
generally closely related to the temperature history of metal and mould.
The basis for such simulations [6–9] is the constitutive equation for the
elastic case which relates the elastic strain vector eF el={eelxx, e

el
yy, e

el
zz, e

el
xy,

eelxz, e
el
yz}

T to the stress vector sF={sxx, syy, szz, sxy, sxz, syz}T via

sF=D̄̄el · eF el (5)

The elasticity matrix D̄̄el is given by

D̄̄el=
E

(1+n)(1−2n)
|
1− n n n 0 0 0
x 1− n n 0 0 0
x 1− n 0 0 0
x 1−2n

2 0 0
x symmetrical 1−2n

2 0
· · · · · · · · · · · · · · · 1−2n

2

} , (6)
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where E(T) stands for the Youngs Modulus and n(T) for the Poisson
ratio. Visco-plasticity occurs if the comparison stress reaches the yield
stress of the considered material, sy(T). If the van Mises comparison
stress, s̄, is chosen for analysis, the following flow condition counts (van
Mises flow condition) [6]

˛ s̄−sy < 0 elastic
s̄−sy=0 elastic-plastic

(7)

with

s̄=[12 (sxx−syy)
2+12 (syy−szz)

2+12 (szz−sxx)
2+3(s2xy+s

2
xz+s

2
yz)]

1/2 (8)

Depending on the visco-plastic flow model used, different yield laws can be
found in the literature [8, 9]. One often used is given by [6]

deF visco-plast=
{“F
“sF}

T dsF “F
“sF

n
with F=s̄−sy (9)

Here, n(T) is the hardening coefficient.
During solidification and subsequent cooling of the casting, large

temperature changes occur. Theoretically, this can be taken into account by
considering the increments of stress and strain. For the total strain incre-
ment the following decomposition is valid

deF Total=deF el+deF visco-plast+deF therm. expan.+deF E(T), c(T). (10)

The last contribution is caused by the temperature dependence of the Young
Modulus and the Poisson ratio via deF E(T), n(T)=D̄̄elast · dD̄̄elast · eF elast. The strain
increment caused by thermal expansion is given by [6]

deF therm. expan.=(a dT+13 Da dfs){ 1, 1, 1, 0, 0, 0}T, (11)

with a(T) being the thermal expansion coefficient and Da the relative
volume change on solidification. In most cases a(T) is artificially modified
to include Da.

With the incremental version of the constitutive equation, Eq. (5), and
the expressions for the different strain increments, Eqs. (9)–(11), the
following generalized constitutive equation can be derived [6, 9]

dsF=(D̄̄elast−D̄̄plast) · (deF Total−deF therm.expan.−deF E(T), c(T))−dsF0 (12)

with dsF0=˛
0 elastic
D̄̄elast “F

“sF

“sy
“T DT

n+{“F
“sF}

T · D̄̄elast “F
“sF

elastic-plastic
(13)
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dsF0 is a fictive stress which accounts for the temperature dependence of the
yield stress. The plasticity matrix is defined as [6, 9]

D̄̄plast=
9[ E
2(1+c)]

2

(n+3[ E
2(1+c)]) · s̄

2
|
s −21 s −1s

−

2 s
−

1s
−

3 s
−

1s
−

4 s
−

1s
−

5 s
−

1s
−

6

x s −22 s −2s
−

3 s
−

2s
−

4 s
−

2s
−

5 s
−

2s
−

6

x s −23 s −3s
−

2 s
−

3s
−

2 s
−

3s
−

6

x s −24 s −4s
−

2 s
−

4s
−

6

x s −25 s −5s
−

6

· · · · · · · · · · · · · · · s −26

} (14)

with

s −1=s1−(s1+s2+s3)/3

s −2=s2−(s1+s2+s3)/3

s −3=s3−(s1+s2+s3)/3

. (15)

G=[ E
2(1+c)] is known as the shear modulus. The solution of the generalized

constitutive equation, Eq. (12), can be achieved by using the results of
the heat flow simulation as input for the stress calculation without any
backflow from the stress calculation. In more sophisticated models, as
in Ref. 5, possible gaps between different materials are calculated which
then influence the change of heat flow across the corresponding interface.
An increasing heat transfer caused by a rising contact pressure can also be
taken into account by these models.

In Table II the material properties necessary for the simulation of
stresses and distortion are listed. Although a rigid dendrite network may
be able to pick up small stresses, very often E(T), n(T), sy(T), and n(T)−1

have nonzero values only below TS. As mentioned above, a(T) sometimes
includes the volume change on solidification. Then, a(T) has a artificial
curve form between TL and TS.

Table II. Material Properties Necessary for a Simulation of Stresses and Distortion
(Properties Marked with * Are Necessary for Both Metal and Mould.)

Symbol Property Unit

E(T) Young’s Modulus* MPa
n(T) Poisson’s ratio* –
sy(T) Yield stress* MPa
n(T) Hardening coefficient* –
a(T) Thermal expansion* K−1

Da Relative volume change on solidification –
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2.3. Cellular Automaton Technique

Cellular Automata (CA) for the prediction of the evolution of dendritic
grains during solidification have achieved quite promising results [10–14].
These kinds of simulations are based on two different interacting modelling
strategies. On the one hand, the temperature distribution is calculated by
solving the heat flow equation, Eq. (1), on a relatively coarse FD or FE
grid. On the other hand, the actual Cellular Automaton acts on a much
finer regular grid. The volume elements of this CA grid should be smaller
than the grains to be modelled. In sophisticated programs the Cellular
Automaton estimates the amount of latent heat to be released (via nuclea-
tion and growth of grains). This amount of latent heat is then taken into
account by the heat flow simulation. From the heat flow simulation the CA
obtains the actual temperature at each CA volume element by interpola-
tion. Therefore, in these programs the heat flow simulation and CA are
strongly coupled [12–14].

Generally, a Cellular Automaton is characterized by (i) the geometry
of the cells (volume elements of the CA grid), (ii) the state of a cell, (iii) the
relation to its neighbors, and (iv) a rule for the change of the cell state
[10]. In order to describe a solidification process the cell state may be
defined as ‘‘liquid,’’ ‘‘mushy,’’ or ‘‘boundary.’’ A ‘‘liquid’’ state means that
the metal in the cell is totally liquid, a ‘‘mushy’’ state means that it is
totally mushy (partly liquid and partly solid), and the ‘‘boundary’’ state
denotes that an envelope of a dendritic grain is located within this cell. The
rule for a change of a cell state (i) physically describes the nucleation and
the grain growth and (ii) the actual state of the corresponding cell and its
neighbors. This paper does not give detailed descriptions of the numeri-
cal procedure of a Cellular Automaton. However, as new material param-
eters are introduced, the corresponding model considerations to describe
nucleation and growth are briefly described.

Nucleation is thought to be a stochastic process which is modelled on
probability. In order to distinguish heterogeneous nucleation at the metal/
mould interface and heterogeneous nucleation in the bulk melt, two distri-
butions of nucleation sites, dn/d(DT), are considered. Such distributions
describe the grain density increase, dn, which is induced by an increase in
the undercooling d(DT). In Refs. 10–14 a Gaussian distribution according
to

dn
d(DT)

=
nmax

`2p DTs
e−

1
2 ·
1DT−DTN

DTs
2 2 (16)

is used. Here, nmax represents the maximal possible grain density, DTN the
undercooling at which a maximum nucleation rate is obtained, and DTs the
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Gaussian distribution width. The total density of grains, n(DT), at a given
undercooling, DT, is given by

n(DT)=F
DT

0

1 dn
d(DTŒ)
2 [1−fs(TŒ)] d(DTŒ). (17)

where the extinction of nucleation sites by the growing grains is also taken
into account. For the presented nucleation model nmax, DTN, and DTs should
be known from experimental results. They are generally considered not to
be temperature-dependent.

Recently, an alternative nucleation model for the prediction of grain
size in inoculated castings has been suggested [15]. The model assumes
that each refiner particle of diameter d is immediately covered with solid.
Nevertheless, the solid can only grow if its curvature (which is now inver-
sely proportional to d ) falls below the critical nucleation curvature. This
leads to the following condition for the necessary undercooling for further
growth,

DTfg=
4s
Dsf d

. (18)

Here, s represents the solid/liquid interface tension, and Dsf the entropy of
fusion. As refiners do reveal a size distribution, Eq. (18) turns this dis-
tribution into an undercooling distribution which defines the amount of
nucleation events occurring at different undercoolings. For this nucleation
model s, Dsf, and the size distribution of the refiner particle must be
known. Again, these input parameters are assumed not to be temperature-
dependent.

Cells which are thought to have nucleated change their state from
‘‘liquid’’ to ‘‘boundary.’’ In the middle of such a cell, a dendritic grain is
considered to grow according to the following growth law,

n(DT)=a2 DT2+a3 DT3. (19)

Here, a2 and a3 are empirical constants which depend on the material
under consideration. Dendritic growth theory is able to relate these con-
stants to the redistribution coefficient, k, the liquidus slope, m, the solid/
liquid interface tension, s, the entropy of fusion, Dsf, and the diffusion
coefficient D. Therefore, either a2 and a3 should be known from experi-
mental results or k, m, s, Dsf, and D must be known if the dendritic growth
theory is applied. As usually during the growth of grains the temperatures
do not change drastically, the above quantities can be considered not to be
temperature-dependent.

1138 Ludwig



Table III. Material Properties (Parameters) Necessary for a Cellular Automaton Simulation
(In Addition to These Quantities, the Properties Listed in Table I Are also Needed. Quantities
Marked With + May Replace the Growth Parameters a2 and a3. Following a New Nucleation
Law [15], the Nucleation Parameters Can Be Replaced by Corresponding Parameters for the

Description of the Size Distribution of Refiner Particles)

Symbol Property Unit

nmax, DTs, DTN Nucleation parameter (see Eq. (16)) m−3, K, K
a2, a3 Growth parameter (see Eq. (19)) m · s−1 · K−2, m · s−1 · K−3

Dl(T) Diffusion coefficient in the liquid+ m2 · s−1

m(T) Liquidus slope+ K/wt.%
k(T) Redistribution coefficient+ –
s(T) Solid/liquid interface tension+ J · m−2

Dsf Entropy of fusion+ J · kg−1 · K−1

Tracking the actual size of the grain shows whether or not the growing
grain hits a neighboring cell and ‘‘infects’’ it with solidification. As the
grains are considered to have a cubic envelope, preservation of the grain
orientation has to be handled with special care. Otherwise, the orientation
of a growing grain switches to the main direction of the underlying CA
grid.

Table III shows material properties (parameters) necessary for a
Cellular Automaton calculation.

2.4. Phase-Field Method

In recent years the number of papers on phase-field simulations has
rapidly increased [16–28]. Early simulations only considered dendritic
growth of pure materials into undercooled melts. In the next step, solutal
dendrites were modelled. Nowadays, multiphase approaches for eutectic,
peritectic, and monotectic solidification processes as well as phase-field
models for solidification with convection are available.

The basis for such simulations is the introduction of a quantity called
phase-field f(r, t). This quantity is defined to be 1 in the solid and 0 in the
liquid. At the solid/liquid interface its value changes continuously from 1
to 0. In the case of a multiphase approach a phase-field variable is intro-
duced for each of the n phases present in the system. f1+·· ·+fn=1 is
always valid. For the phase-field f(r, t) a differential equation is derived
which allows the estimation of the time-dependent spatial distribution. The
following differential equation is often used:

1
Mf

“f

“t
=e2N2f−

“f(f, c, T, W)
“f

. (20)
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Here, f(f, c, T, W) represents the Gibb’s free energy density taken from
thermodynamic considerations. W is a constant which is proportional to
the energy barrier between solid and liquid (height of the double-well
potential). e is a quantity representing the effect of the solid/liquid inter-
face tension mathematically, and Mf describes how quickly the system
tends to equilibrium.

In the phase-field technique it is essential that the solid/liquid inter-
face (f=1Q f=0) extends over a certain distance Df. To simulate the
evolution of the solidification microstructure on a microscopic scale of a
few microns, Df must be chosen to be much larger than the true solid/
liquid interface width of only a few nanometers. Theoretically, the phase-
field equation, Eq. (20), can be evaluated for the case that Df tends towards
the true solid/liquid interface width d. This so-called sharp interface
asymptotic is used to relate W, e, and Mf to the material properties
solid/liquid interface width, d, solid/liquid interface tension, s, and kinetic
coefficient, mk. The following proportionalities were found [16–18],

d % e/`W, (21)

s % e`W , and (22)

mk %Mfe/`W. (23)

mk is defined via V=mk(TL−T), with growth velocity, V, and undercool-
ing, (TL−T ). The anisotropic nature of the solid/liquid interface tension
s(h) and that of the kinetic coefficient mk(h) (mostly equivalent and a four-
fold symmetry for cubic materials and a six-fold symmetry for hexagonal
materials at the basal plane) gives an anisotropy of e(h) andMf(h).

As in the phase-field technique the solid/liquid interface is not sharp
and the difference in the solubility of liquid and solid cannot be taken into
account simply by a boundary condition at the interface. Therefore, the
thermodynamic background of the difference in the solubility is considered.
This then leads to a somewhat different diffusion equation compared to the
usual one

“c
“t
=N ·5Mcc(1−c) N 1

“f(f, c, T, W)
“c
26 . (24)

Here,Mc represents how quickly the system tends to chemical equilibrium.
ForMc the following relation can be derived

Mc=
nm

RT
(DLf+DS(1−f)). (25)
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nm represents the molar volume, R the gas constant, and DL and DS the
diffusion coefficient in the liquid and the solid. For a simulation of an alloy
solidification the phase-field equation, Eq. (20), and the modified diffusion
equation, Eq. (24), have to be solved simultaneously.

Table IV shows the material properties necessary for a phase-field
simulation. In the case of multiphase simulations it is necessary to know
the values for d, s, and mk for each pair of phases. In addition, the Gibb’s
free energy density must be known as a function of all phase variable,
f(f1,..., fn, c, T, W). In most cases the temperature dependence of the
material properties are neglected because the calculation domain does not
involve large temperature changes.

2.5. Multiphase Volume Averaging

The multiphase volume averaging technique allows the prediction of
macrosegregations (macroscopic concentration inhomogeneities) in colum-
nar solidifying castings (without moving solid) [29–35] or in equiaxed
solidifying castings (with moving solid) [36–40].

In the multiphase volume averaging technique applied to solidifica-
tion, both liquid and solid are treated as interpenetrating and interacting
‘‘fluids.’’ The volume fractions are assumed to be continuous functions of
space and time and their sum is equal to one:

fl+fs=1 (26)

Conservation equations for each phase are derived. These equations include
different interaction terms through which the microscopic solidification
phenomena are incorporated into the conservation equations. For the

Table IV. Material Properties (Parameters) Necessary for a Phase-Field Simulation
(In Addition to these Quantities, the Properties Listed in Table I Are also Needed.

s and mk Depend on the Crystal Orientation h)

Symbol Property Unit

s(h) Solid/liquid interface tension J · m−2

mk(h) Kinetic coefficient m · s−1 · K−1

d Thickness of the solid/liquid interface m
Dl(T, c) Diffusion coefficient in the liquid m2 · s−1

D s(T, c) Diffusion coefficient in the solid m2 · s−1

cm Molar volume m3

f(f, T, c, W) Gibb’s free energy density J · m−3
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phase i (solid: s, liquid: l ) the conservation equations of mass, momentum,
species, and enthalpy are given as

“

“t
(fi ri)+N · (fi rinfi)=Mi, (27)

“

“t
(fi rinfi)+N · (fi rinfi é nfi)=−fi Np+N · ȳ̄i+fi rigf+UF i

with ȳ̄i=ri mifi(N · nfi+(N · nfi)T), (28)

“

“t
(fi rici)+N · (fi rinfic i)=N · (fi riD i Nci)+Ci, (29)

“

“t
(fi rihi)+N · (fi rinfihi)=N · (liN ·Ti)+Qi

with hi=F
Ti

Trefi
cp, i dT+h

ref
i . (30)

Here, ri(T) represents the density, mi(T) the viscosity, Di(T) the diffusion
coefficient, li(T) the thermal conductivity, and cp, i(T) the specific heat
capacity of phase i. T refi is the reference temperature and h refi the corre-
sponding reference enthalpy of phase i. The quantities velocity, uF, concen-
tration, c, enthalpy, h, and temperature, T, do have a phase index, because
they are separately defined for solid and liquid. However, because of the
ideal heat transfer between the solid grains and the surrounding melt, the
temperature of solid and liquid is assumed to be equal. The mass transfer
rate from (or to) the phase i is described byMi, the momentum transfer rate
by Ui, the species transfer rate by Ci, and the enthalpy transfer rate by Qi.
The essential modelling considerations in the multiphase volume averaging
techniques are within the definition of this exchange term. However, this
paper only briefly reviews selected details of the exchange terms.

The choice of an adequate model for the mechanical momentum
exchange between moving dendritic grains and the flowing melt is the
subject of ongoing scientific discussions. Commonly, this exchange term is
described by UF dsl=Ksl(uFs−uFl). Ksl(=Kls) is called the interphase momen-
tum exchange coefficient. The most general expression for Ksl, valid for a
solid fraction from zero up to 0.7, is the classical model of Kozeny–
Carman [31]. For a solid which is resting and behaves like a porous
medium, the most general model for Ksl is that of Blake–Kozeny [31].
These two models can be combined if a critical solid volume fraction above
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which equiaxial crystal merge to form a rigid solid structure, fcrits , is
introduced:

Ksl=−18f
2
l

m lfsCe
d2

for fs [ f
crit
s with Ce=10

f s
f3l

=−f2l
m l

K
for fs > f

crit
s with K=K0

f3l
f2s
.

(31)

Here, empirical expressions for the settling ratio, Ce, and the overall per-
meability, K, are also given. d represents the average grain diameter and K0
an empirical constant. In columnar dendritic solidification the permeability
of the mushy zone is known to be anisotropic; it differs normal and parallel
to the dendrite trunks. d is evaluated from a conservation equation for
the grain density which includes nucleation (and disappearance of grains).
Thus, a nucleation law has to be considered, and needs parameters such as
nmax, DTN, and DTs (see Section 2.3).

As mentioned above, the solid phase is treated as pseudo fluid;
hence, the solution to its momentum conservation equation requires the
solid phase to have ‘‘viscosity.’’ This effective solid viscosity is thought to
be caused by collisions between individual rigid grains. For equiaxial crys-
tals, the effective solid viscosity increases with increasing solid volume
fraction and crystal size because of stronger crystal interactions. For
fs > 0.2, the solid/liquid mixture can be viewed as a nonNewtonian slurry,
with the viscosity depending on crystal size and shape, the solid fraction,
and the shear rate [31]. The exact nature of the corresponding relation for
the effective solid viscosity is still not known. As Ishii and Zuber [41]
found for the viscosity of a solid/liquid mixture

mmix=m l(1−fs/f
crit
s )

−2.5 ·fcrits (32)

and because of mmix=fl m l+fs ms it is proposed [31] that

ms=
m l

fs
((1−fs/f

crit
s )

−2.5 ·fcrits −(1−fs)). (33)

For fs > f
crit
s , as well as for columnar growth at any solid fraction (no solid

movement), ms is infinitely large.
In Ref. 32 the effect of back-diffusion (diffusion from the solid/liquid

interface towards the inside of a dendritic grain) on the appearance of
macrosegregation is modelled by introducing two new quantities: the ratio
between the solid/liquid interface area and the volume of a dendritic grain,
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Ss, and an effective diffusion length in the solid grain, ls. With these two
quantities the species transfer rate is given by

Cl=kcl 1Ml+Ss
rsD s
l s
2. (34)

The first term in the bracket of Eq. (34) describes the solute redistribution
caused by a mass transfer Mi (solidification and/or remelting) and the
second the contribution from back-diffusion.

Table V shows the material properties necessary for a multiphase
volume averaging simulation applied to solidification. According to the
complexity of the model used additional quantities may be necessary. K0,
Ss, and ls are quantities which are rarely known. Here, the dependence on
the dendrite arm spacing, l2, seems to be much more important than
temperature dependence.

3. CONCLUSIONS

From the description of the different simulation techniques, the
following conclusions can be drawn:

• Physical models for a process description, such as solidification and
casting, need material property data as input.

Table V. Material Properties (Parameters) Necessary for a Volume Averaging Simulation
With and Without Moving Solid Phase (K0, Ss, ls May Depend on Microstructure Quantities
such as the Dendrite Arm Spacing, l2. According to the Complexity of the Model Used,

Additional Quantities May Be Necessary)

Symbol Property Unit

TL, TS Liquidus and solidus temperature K, K
h l(T), h s(T) Enthalpy of l and s J · kg−1

rl(T, c), rs(T, c) Density of l and s kg · m −3

cp, l(T), cp, s(T) Specific heat capacity of l and s J · kg−1 · K−1

ll(T), ls(T) Thermal conductivity of l and s J · s−1 · m−1 · K−1

m l(T), mmix(T) Kinetic viscosity of l and the s/l mixture m2 · s−1

Dl(T, c), D s(T, c) Diffusion coefficient in l and s m2 · s−1

k(T) Redistribution coefficient –
m(T) Liquidus slope K/wt.%
K0 Permeability constant (see Eq. (31)) m2

fcrits Limit for solid mobility –
nmax, DTs, DTN Nucleation parameter (see Eq. (16)) m−3, K, K

Ss Solid/liquid interface area per volume m−1

ls Average diffusion length in dendr. grain m
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• The more sophisticated the model, the more material properties
(parameters) are involved.

• However, reasonable data for material properties necessary for
standard simulation models are often quite difficult to find. Even
worse is the situation for properties needed in more sophisticated
numerical models such as Cellular Automaton and phase-field
techniques or multiphase volume averaging methods. They are only
known in very few cases.

• In conclusion, we predict that the absence of reasonable material
property data will act as a brake on the use of sophisticated models
in industrial daily routines. Thus, we believe that global economic
growth is hindered by the lack of material data.
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